The algebraic independence of certain numbers to algebraic powers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

algebraic independence of certain formal power series (i)

we give a proof of the generalisation of mendes-france and van der poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of carlitz, we shall introduce a class of algebraically independent series.

متن کامل

On Normal Numbers and Powers of Algebraic Numbers

Let α > 1 be an algebraic number and ξ > 0. Denote the fractional parts of ξαn by {ξαn}. In this paper, we estimate a lower bound for the number λN (α, ξ) of integers n with 0 ≤ n < N and {ξα} ≥ min { 1 L+(α) , 1 L−(α) } . Our results show, for example, the following: Let α be an algebraic integer with Mahler measure M(α) and ξ > 0 an algebraic number with ξ #∈ Q(α). Put [Q(α, ξ) : Q(α)] = D. T...

متن کامل

Effective Irrationality Measures for Certain Algebraic Numbers

A result of Chudnovsky concerning rational approximation to certain algebraic numbers is reworked to provide a quantitative result in which all constants are explicitly given. More particularly, Padé approximants to the function (1 jc)1/3 are employed to show, for certain integers a and b, that |(a/fc) p/q\> cq~* when q > 0. Here, c and k are given as functions of a and b only. In 1964 Baker [1...

متن کامل

On the Approximation to Algebraic Numbers by Algebraic Numbers

Let n be a positive integer. Let ξ be an algebraic real number of degree greater than n. It follows from a deep result of W. M. Schmidt that, for every positive real number ε, there are infinitely many algebraic numbers α of degree at most n such that |ξ−α| < H(α)−n−1+ε, where H(α) denotes the näıve height of α. We sharpen this result by replacing ε by a function H 7→ ε(H) that tends to zero wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1977

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-32-1-63-71